Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0298229, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38437193

RESUMO

Herbivory can be reduced by the production of defense compounds (secondary metabolites), but generally defenses are costly, and growth is prioritized over defense. While defense compounds may deter herbivory, nutrients may promote it. In a field study in boreal forest in Norway, we investigated how simulated herbivory affected concentrations of phenolics (generally a defense) and the carbon/nitrogen (C/N) ratio in annual shoots of bilberry (Vaccinium myrtillus), a deciduous clonal dwarf shrub whose vegetative and generative parts provide forage for many boreal forest animals. We measured concentrations of total tannins, individual phenolics, nitrogen and carbon following several types and intensities of herbivory. We identified 22 phenolics: 15 flavonoids, 1 hydroquinone and 6 phenolic acids. After high levels of herbivory, the total tannin concentration and the concentration of these 22 phenolics together (called total phenolic concentration) were significantly lower in bilberry annual shoots than in the control (natural herbivory at low to intermediate levels). Low-intensive herbivory, including severe defoliation, gave no significantly different total tannin or total phenolic concentration compared with the control. Many individual phenolics followed this pattern, while phenolic acids (deterring insect herbivory) showed little response to the treatments: their concentrations were maintained after both low-intensive and severe herbivory. Contrary to our predictions, we found no significant difference in C/N ratio between treatments. Neither the Carbon:Nutrient Balance hypothesis nor the Optimal Defense hypotheses, theories predicting plant resource allocation to secondary compounds, can be used to predict changes in phenolic concentrations (including total tannin concentration) in bilberry annual shoots after herbivory: in this situation, carbon is primarily used for other functions (e.g., maintenance, growth, reproduction) than defense.


Assuntos
Hidroxibenzoatos , Vaccinium myrtillus , Animais , Herbivoria , Taninos , Fenóis , Carbono , Nitrogênio
2.
PLoS One ; 15(3): e0230509, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32218604

RESUMO

Vegetative parts of bilberry (Vaccinium myrtillus) are important forage for many boreal forest mammal, bird and insect species. Plant palatability to insects is affected by concentration of nutrients and defense compounds in plants. We expected that palatability of bilberry leaves to insect herbivores is influenced by light availability and soil productivity (both affecting nitrogen concentration and constitutive carbon-based defense compound concentration) and herbivory by mammals (affecting nitrogen concentration and induced carbon-based defense compound concentration). We studied bilberry leaf herbivory under different light availability, soil productivity and mammalian herbivory pressure in small sampling units (1m x 1m) in boreal forest in Norway. We used generalized linear mixed models and generalized additive mixed models to model insect herbivory on bilberry leaves as a function of shade, soil productivity and mammalian herbivory. Observed insect herbivory on bilberry leaves increased with increasing shade levels. Predicted insect herbivory increased with increasing previous mammalian herbivory at high shade levels and this response was magnified at higher soil productivity levels. At low to intermediate shade levels, this response was only present under high soil productivity levels. Our results indicate that light availability is more important for variation in bilberry leaf palatability than soil nutrient conditions.


Assuntos
Herbivoria/fisiologia , Insetos/fisiologia , Mamíferos/fisiologia , Modelos Biológicos , Folhas de Planta/crescimento & desenvolvimento , Solo , Luz Solar , Vaccinium myrtillus/crescimento & desenvolvimento , Animais
3.
BMC Ecol ; 17(1): 12, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28376769

RESUMO

BACKGROUND: Plant strategies to resist herbivory include tolerance and avoidance. Tolerance strategies, such as rapid regrowth which increases the palatability of new shoots, can lead to positive feedback loops between plants and herbivores. An example of such a positive feedback occurs when moose (Alces alces) browse trees in boreal forests. We described the degree of change in tree morphology that accumulated over time in response to repeated browsing by moose, using an index of accumulated browsing. We evaluated whether accumulated browsing could predict the probability and extent of current browsing across woody species in a Norwegian boreal forest, and how our accumulated browsing index related to changes in tree height, shoot availability and shoot size. RESULTS: The probability and extent of current browsing increased with the degree of accumulated browsing in all tree species. Plants highly modified by previous browsing were the most attractive, with no indication of decreased preference with repeated browsing over time. The preference for previously browsed trees is most likely driven by increased relative availability of shoots within browsing height and maybe increased palatability. This response to previous browsing was general for both preferred and avoided forage species, in both conifers and deciduous trees. CONCLUSIONS: Our results suggest that the adaptation for rapid regrowth after browsing does not reduce herbivory on trees. Rather, our results indicate that plant responses to browsing increase the probability of future herbivory. This response could potentially lead to higher plant mortality where cervid populations are maintained at stable high densities and has implications for plant population dynamics and forestry practices.


Assuntos
Cervos/fisiologia , Comportamento Alimentar , Animais , Ecossistema , Herbivoria , Estações do Ano , Árvores/crescimento & desenvolvimento
4.
Bioscience ; 66(9): 722-734, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28533563

RESUMO

The boreal forest is one of the largest terrestrial biomes on Earth. Conifers normally dominate the tree layer across the biome, but other aspects of ecosystem structure and dynamics vary geographically. The cause of the conspicuous differences in the understory vegetation and the herbivore-predator cycles between northwestern Europe and western North America presents an enigma. Ericaceous dwarf shrubs and 3- to 4-year vole-mustelid cycles characterize the European boreal forests, whereas tall deciduous shrubs and 10-year snowshoe hare-lynx cycles characterize the North American ones. We discuss plausible explanations for this difference and conclude that it is bottom-up: Winter climate is the key determinant of the dominant understory vegetation that then determines the herbivore-predator food-web interactions. The crucial unknown for the twenty-first century is how climate change and increasing instability will affect these forests, both with respect to the dynamics of individual plant and animal species and to their community interactions.

5.
Integr Zool ; 6(4): 341-51, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22182326

RESUMO

Browsing by large herbivores might either increase or decrease preference for the plant by other herbivores, depending on the plant response. Using a cafeteria test, we studied the preference by root voles (Microtus oeconomus [Pallas, 1776]) for bilberry (Vaccinium myrtillus L.) previously subjected to 4 levels of simulated moose (Alces alces [Linnaeus, 1758]) density. The different levels of moose density were simulated at population densities relevant for Fennoscandian conditions, in exclosures situated along a site productivity gradient. We expected: (i) voles to prefer bilberry from high productivity sites over low productivity sites; (ii) voles to prefer browsed bilberry, if plants allocate resources to compensatory growth or to avoid browsed bilberry if plants allocate resources to defense; (iii) these effects to increase with increasing simulated moose density; and (iv) the concentration of plant chemicals and the plant morphology to explain vole preference. Specifically, we predicted that voles would prefer: (i) plants with high nitrogen content; (ii) plants with low content of defensive substances; and (iii) tall plants with long shoots. Voles preferred bilberry from the high productivity sites compared to the low productivity sites. We also found an interaction between site productivity and simulated moose density, where voles preferred unbrowsed plants at low productivity sites and intermediate levels of browsing at high productivity sites. There was no effect of plant chemistry or morphology on vole preference. We conclude that moose browsing impacts the food preference of voles. With the current high densities of moose in Fennoscandia, this could potentially influence vole food selection and population dynamics over large geographical areas.


Assuntos
Arvicolinae/fisiologia , Cervos/fisiologia , Preferências Alimentares/fisiologia , Herbivoria/fisiologia , Vaccinium myrtillus/química , Análise de Variância , Animais , Finlândia , Dinâmica Populacional
6.
Oecologia ; 167(4): 1063-73, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21660581

RESUMO

Carbon-based secondary metabolites (CBSMs) are assumed to function as defences that contribute to herbivore-avoidance strategies of woody plants. Severe browsing has been reported to reduce concentrations of CBSMs and increase N concentrations in individual plants, causing heavily browsed plants to be characterised by N-rich/C-poor tissues. We hypothesised that concentrations of condensed tannins (CT) and total polyphenols (TP) should decrease, or N increase, in relation to increasing intensity of browsing, rendering severely browsed plants potentially more palatable (increased N:CT) and less N-limited (increased N:P) than lightly browsed ones. We sampled naturally browsed trees (taller than 2 m) of four abundant species in southern Kruger National Park, South Africa. Species-specific relationships between N:CT, CT, TP and P concentrations and increasing browsing intensity were detected, but N and N:P were consistently invariable. We developed a conceptual post-hoc model to explain diverse species-specific CBSM responses on the basis of relative allocation of C to total C-based defence traits (e.g. spines/thorns, tough/evergreen leaves, phenolic compounds). The model suggests that species with low allocation of C to C-based defence traits become C-limited (potentially more palatable) at higher browsing intensity than species with high allocation of C to C-based defences. The model also suggests that when N availability is high, plants become C-limited at higher browsing intensity than when N availability is low.


Assuntos
Combretaceae/crescimento & desenvolvimento , Fabaceae/crescimento & desenvolvimento , Herbivoria , Malvaceae/crescimento & desenvolvimento , Folhas de Planta/química , Carbono/análise , Carbono/metabolismo , Combretaceae/química , Combretaceae/metabolismo , Ecossistema , Fabaceae/química , Fabaceae/metabolismo , Malvaceae/química , Malvaceae/metabolismo , Modelos Biológicos , Nitrogênio/análise , Nitrogênio/metabolismo , Fósforo/análise , Fósforo/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Polifenóis/análise , Polifenóis/metabolismo , África do Sul , Taninos/análise , Taninos/metabolismo , Árvores/química , Árvores/crescimento & desenvolvimento , Árvores/metabolismo
7.
Ann Bot ; 99(5): 967-85, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17085470

RESUMO

BACKGROUND AND AIMS: A standardized methodology to assess the impacts of land-use changes on vegetation and ecosystem functioning is presented. It assumes that species traits are central to these impacts, and is designed to be applicable in different historical, climatic contexts and local settings. Preliminary results are presented to show its applicability. METHODS: Eleven sites, representative of various types of land-use changes occurring in marginal agro-ecosystems across Europe and Israel, were selected. Climatic data were obtained at the site level; soil data, disturbance and nutrition indices were described at the plot level within sites. Sixteen traits describing plant stature, leaf characteristics and reproductive phase were recorded on the most abundant species of each treatment. These data were combined with species abundance to calculate trait values weighed by the abundance of species in the communities. The ecosystem properties selected were components of above-ground net primary productivity and decomposition of litter. KEY RESULTS: The wide variety of land-use systems that characterize marginal landscapes across Europe was reflected by the different disturbance indices, and were also reflected in soil and/or nutrient availability gradients. The trait toolkit allowed us to describe adequately the functional response of vegetation to land-use changes, but we suggest that some traits (vegetative plant height, stem dry matter content) should be omitted in studies involving mainly herbaceous species. Using the example of the relationship between leaf dry matter content and above-ground dead material, we demonstrate how the data collected may be used to analyse direct effects of climate and land use on ecosystem properties vs. indirect effects via changes in plant traits. CONCLUSIONS: This work shows the applicability of a set of protocols that can be widely applied to assess the impacts of global change drivers on species, communities and ecosystems.


Assuntos
Ecologia/métodos , Ecossistema , Plantas , Biodiversidade , Clima , Europa (Continente) , Humanos , Israel , Poaceae , Solo
8.
Ambio ; 33(6): 276-82, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15387059

RESUMO

Northern Botswana and adjacent areas, have the world's largest population of African elephant (Loxodonta africana). However, a 100 years ago elephants were rare following excessive hunting. Simultaneously, ungulate populations were severely reduced by decease. The ecological effects of the reduction in large herbivores must have been substantial, but are little known. Today, however, ecosystem changes following the increase in elephant numbers cause considerable concern in Botswana. This was the background for the "BONIC" project, investigating the interactions between the increasing elephant population and other ecosystem components and processes. Results confirm that the ecosystem is changing following the increase in elephant and ungulate populations, and, presumably, developing towards a situation resembling that before the reduction of large herbivores. We see no ecological reasons to artificially change elephant numbers. There are, however, economic and social reasons to control elephants, and their range in northern Botswana may have to be artificially restricted.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Elefantes , Animais , Antílopes , Botsuana , Feminino , Masculino , Desenvolvimento Vegetal , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...